Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation.
نویسندگان
چکیده
Phosphate deficiency is characteristic for many natural habitats, resulting in different physiological responses in plants and bacteria including the replacement of phospholipids by glycolipids and other phosphorous-free lipids. The plant pathogenic bacterium Agrobacterium tumefaciens, which is free of glycolipids under full nutrition, harbors an open reading frame (ORF) coding for a processive glycosyltransferase (named as Pgt). This glycosyltransferase was previously shown to synthesize glucosylgalactosyldiacylglycerol (GGD) and digalactosyldiacylglycerol (DGD) after heterologous expression. The native function of this enzyme and the conditions for its activation remained unknown. We show here that Pgt is active under phosphate deprivation synthesizing GGD and DGD in Agrobacterium. A corresponding deletion mutant (Δpgt) is free of these two glycolipids. Glycolipid accumulation is mainly regulated by substrate (diacylglycerol) availability. Diacylglycerol and the total fatty acid pool are characterized by an altered acyl composition in dependence of the phosphate status with a strong decrease of 18:1 and concomitant increase of 19:0 cyclo during phosphate deprivation. Furthermore, Agrobacterium accumulates two additional unknown glycolipids and diacylglycerol trimethylhomoserine (DGTS) during phosphate deprivation. Accumulation of all these lipids is accompanied by a reduction in phospholipids from 75 to 45% in the wild type. A further non-phosphorous lipid, ornithine lipid, was not increased but its degree of hydroxylation was elevated under phosphate deprivation. The lack of GGD and DGD in the Δpgt mutant has no effect on growth and virulence of Agrobacterium, suggesting that these two lipids are functionally replaced by DGTS and the two unknown glycolipids under phosphate deprivation.
منابع مشابه
Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis
Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine li...
متن کاملIsolation of Agrobacterium Tumefaciens Strains from Crown Gall Disease on Imported Roses Plants in Qazvin Province
Cultivar of roses (Rosa spp.) has been grown in greenhouses in Qazvin region of Iran for local markets. Agrobacterium tumefaciens strains were isolated and identified from six different samples of roses plants imported from the Netherland to Iran. During August and September of 2012, nearly 2-5% of rose plants in two different greenhouses in the province of Qazvin were observed with crown gall ...
متن کاملPhosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system.
The plant pathogen Agrobacterium tumefaciens forms architecturally complex biofilms on inert surfaces. Adherence of A. tumefaciens C58 was significantly enhanced under phosphate limitation compared to phosphate-replete conditions, despite slower overall growth under low-phosphate conditions. Replacement of Pi with sn-glycerol-3-phosphate and 2-aminoethylphosphonate yielded similar results. The ...
متن کاملAccumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation.
Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and ...
متن کاملAgrobacterium tumefaciens-mediated transformation of maize endosperm as a tool to study endosperm cell biology.
Developing maize (Zea mays) endosperms can be excised from the maternal tissues and undergo tissue/cell-type differentiation under in vitro conditions. We have developed a method to transform in vitro-grown endosperms using Agrobacterium tumefaciens and standard binary vectors. We show that both aleurone and starchy endosperm cells can be successfully transformed using a short cocultivation wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2013